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In this paper the #exural vibration of rotors, mounted on #uid "lm bearings, is considered.
The rotor is described by a series of distributed and lumped elements. Frequency-dependent,
transfer matrix methods are used to determine the characteristic determinant of the system.
Direct search optimization techniques are employed enabling the whirl frequency and
system stability to be determined and compared with results obtained from lumped
modelling. Thereafter the dynamic sti!ness matrix for the system is de"ned, from which the
multivariable frequency response matrix for system can be established. Frequency domain
identi"cation techniques are employed enabling the multi-input, multi-output transfer
function matrix of the system, to be determined. It is shown that by this method an accurate
low order model can be achieved, for feedback control analysis and design.
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1. INTRODUCTION

The analysis of the #exural vibrations of rotors, mounted on #uid "lm bearings, is
a principal topic in dynamic studies and in the design of high-speed rotors. Usually, "nite
element methods are used for the computation of the whirl frequency [1]. However, the
high number of natural frequencies obtained by this method have produced large-scale
models for multi-mass rotor systems. Furthermore, for the active vibrational control of
rotors, the use of a reduced order models are often employed for controller design purposes
[2]. Further di$culties arise only when a single actuator is available for control purposes if
more than one sensor is used. The reason for this, is the multivariable nature of the
rotor-bearing system [3], where the interaction e!ects must also be considered. Therefore,
the use of the transfer function matrix description of the system is a necessary prelude to
vibration control studies, where the state-space models in these cases have high number of
state variables [2].

The transfer matrix method (TMM) for this process was introduced by Myklestad [4]
and later extended by Prohl [5]. The technique was then modi"ed by Lund [6] where
distributed shafts connecting lumped discs on bearing supports, are considered to have
#exural sti!ness, but no mass. This was followed by a combination of transfer matrix and
"nite element methods [7]. Further modi"cations which include the e!ects of distributed
shafts, can be found in the literature; see, for example, reference [8], where the elements of
the transfer matrix of the distributed elements are frequency dependent.

The sti!ness matrix method is well known for the analysis of linearly elastic structures,
the members of which are modelled by an equivalent lumped system, see for example
reference [9]. This method enables the overall sti!ness matrix to be obtained from the
individual equations.
0022-460X/00/250835#22 $35.00/0 ( 2000 Academic Press



836 M. ALEYAASIN E¹ A¸.
A method used in structural mechanics where the elements of the system are treated as
distributed and uniform, by using the frequency-dependent dynamic sti!nesses [10], is
known as the dynamic sti!ness matrix method (DSMM). These methods are similar owing
to the matrix assembling procedure. More recently, this procedure has been referred to as
the high-precision "nite element method [11].

The dynamic sti!ness matrix method is also employed for the vibrational analysis of
rotor-bearing systems [12, 13] as an alternative method to the "nite element approach and
the transfer matrix method. Recently, the theory of distributed-lumped modelling [14] has
been employed to establish that TMM and DSMM are equivalent. When implemented for
rotors mounted on #uid "lm bearings, two identical characteristic determinants results.
However, the numerical computation of the damped natural frequencies using DSMM
yields a signi"cant unavoidable error [15]. Regardless of this limitation, the dynamic
sti!ness matrix method is described as an accurate technique for frequency response
determination [15].

In this paper, the #exural vibration of a rotor-bearing system is analyzed by
a combination of TMM and DSMM, In the "rst step the transfer matrix method is used and
the eigenvalues of the system are computed by the Nedler and Mead Simplex search,
optimization technique. The whirl frequencies computed thereafter are compared with
those obtained from a lumped model of the system.

The computation of the multivariable frequency response matrix of the system by the
dynamic sti!ness matrix method is also included. This is followed by frequency domain
identi"cation from which the multi-input, multi-output transfer function matrix of the
system, can be computed. In the case under consideration, two output sensors and two
input actuators, and three sensors with two actuators, are investigated. The associated
square and non-square, transfer function matrix descriptions of the system are computed
for these representations.

2. STABILITY AND WHIRL FREQUENCY, USING TRANSFER MATRIX METHOD

In Figure 1, a rotating shaft representation, consisting of a series of distributed and
lumped elements is shown. The number of lumped elements is n and there are (n#1)
distributed elements.
Figure 1. Distributed*Lumped rotor on #uid "lm bearings: 1*k
y1y1

; 2*c
y1y1

; 3*k
z1z1

; 4*c
z1z1

; 5*k
y2y2

;
6*c

y2y2
; 7*k

z2z2
; 8*c

z2z2
.



Figure 2. Distributed}lumped parameter model.
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The distributed-lumped parameter model for the system is shown in Figure 2. For the
distributed part there are left and right-hand terminations each having eight parameters.
These are displacement >L

i
, >R

i
and ZL

i
, ZR

i
, slopes hL

i
, hR

i
and /L

i
, /R

i
, bending moments
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yi
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, shear forces QL
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, QR
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and QL
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, QR
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, for the left and right boundary

terminations respectively. For the lumped part there are also left- and right-hand
terminations each speci"ed by the above eight parameters. The input to the lumped
elements is the output from the distributed elements. The procedures for the derivation of
an Euler beam model are exercised for the distributed part while the equations for
rigid-body motion are considered for the lumped model [16].

The following relationships exist for the input and output of each distributed, and lumped
element, the detailed analysis of which are given in reference [16]. The governing
distributed element equation is
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where
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For the lumped parts, the gyroscopic moments and rotary inertia of the discs are included
which couples the motions in y and z directions:
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where the [U(i)
l

] in equation (4) is [6]
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where in equation (6b) J
p
and J

t
are the polar and transverse moments of inertia of lumped

disc and C in equation (3) is
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and in equation (7)
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In equations (1)} (9), s is the Laplace variable, m is the mass of each lumped element, X is the
rotational speed of the shaft, o is the density of the shaft material, A is the cross-sectional
area, E is the modulus of elasticity and I is the moment of inertia of the cross-section in
bending, for each distributed element. The polar moment of inertia of the lumped disc is J

p
and ¸ is the length of each distributed element.
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The transfer matrix for the #uid "lm bearings could be expressed by the sti!ness and
damping of the #uid "lm, as indicated in Figure 1, yielding the form
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and K
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, K
yz

, K
zz

, K
zy

are the sti!ness of the bearings and C
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, C
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, C
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, C
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are the damping
coe$cients where the indices yz and zy indicate cross-coupled values.

According to Figures 1 and 2, >K L
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the transfer matrix of the ith lumped element ¸
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], then the transfer matrix of the

overall system [T] relating the above-mentioned values for the left and right ends can be
computed as
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where [T] in equation (13) is
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Finally, equation (13) can be expanded using the elements of the [T] matrix yielding
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For the con"guration in Figure 1 the values of MK L
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In order to obtain a non-trivial solution for equations (23)}(26) the following determinant
must be zero:
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The damped natural frequency of the system could be computed by determining the roots of
this irrational characteristic equation (27). This procedure will be shown via a worked
example in the next section.
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3. FREQUENCY RESPONSE COMPUTATION BY THE DYNAMIC
STIFFNESS MATRIX METHOD

In the formulation of the dynamic sti!ness matrix method, the force and displacement
vectors must be de"ned as
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Then equations (1) and (2) could also be expressed in the following form:
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Equation (30) could be converted into a dynamic sti!ness form in which all the elements of
the matrix are sti!ness coe$cients. This conversion is possible for distributed shaft elements
since
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The elements of the dynamic sti!ness matrix in equation (31) could be expressed in terms of
transfer matrix elements detailed in reference [16] as
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Generally, when a part of the rotor bearing system, consists of n successive distributed shaft
elements, then the overall dynamic sti!ness matrix could be expressed as [15]
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From equations (5) and (6) for the ith disc lumped elements the dynamic sti!ness matrix
form could not be expressed in the form of equation (31). However, an alternative form
could be written as [17]
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Similarly from equations (11) and (12), for "rst lumped bearing,
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According to Figure 1, when the rotor-bearing system consists of n distributed shaft
elements connected by n lumped discs and is supported on two bearings at the left and right
ends, uising equations (35)}(37) and (33), the equations for the #exural vibrations of the
rotor could be expressed by a dynamic sti!ness matrix form as follows:
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where equation (38) is the generalized form of the system equations in reference [14]. For
the purpose of frequency response determination, consider the external forces applied to the
ith lumped element, designated by [Q1

i
] and the resulting displacement designated by [q6

i
].

Then the equations of motion could be expressed in terms of the #exibility matrix as
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The #exibility matrix in equation (39) is
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For rotors mounted on #uid "lm bearings, the force vectors at the left of the "rst bearing
and at the right of the second bearing vanishes:
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]"0 and [Q< R

2
]"0. (41)

Considering equations (41) the system of equations (38) has non-trivial solution if the
following determinant is zero:

R"DK~1D"0. (42)

Recently, the authors have shown the equivalence of the characteristic determinants in
TMM demonstrated in equation (27) with one in the DSMM displayed in equation (42).
However, they pointed out that numerical computation considers the denominator terms
also in equation (42) and this leads to a signi"cant error in the computation of the damped
natural frequencies by the DSMM [15].

Meanwhile the vibration of the mth lumped disc in vertical y direction which results from
the vertical excitation force at lth lumped element can be computed easily using the
#exibility matrix in equation (40) so that
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can be obtained from each transfer function, so that a vector of frequency response data, as
a function of u could be written as
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Although there are some techniques for the identi"cation of models from frequency
response data, time domain, state-space realizations are often employed [18]. If each set of
frequency response data is considered separately, then one can estimate any rational
transfer function [19]. Since the results obtained through simulation do not include noise,
the authors have investigated the time response from the frequency response data, using the
inverse Fourier transform [20]. The results show responses similar to those from a second
order system model. This leads to the application of a second order identi"cation algorithm.
The second order transfer function estimates, enabling the determination of the transfer
function from the frequency response data in equations (44) and (45) result in the following
form:

G@
pp

(s)"
1

(m
pp

s2#c
pp

s#k
pp

)
, (46)

G@
pq

(s)"
1

(m
pq

s2#c
pq

s#k
pq

)
. (47)

For the mass, damping, and sti!ness coe$cients to have the same roots as the determinant
in equation (27), equations (46) and (47) can be written as

G@
pp

(s)"
1

m
pp

(s2#2as#a2#b2)
, (48)

G@
pq

(s)"
1

m
pq

(s2#2as#a2#b2)
, (49)

where s"!a$jb are the roots of the determinant.
If y(.!9)

pp
and y(.!9)

pq
are the maximum absolute values of the frequency response function of

the actual system, in equations (44) and (45), then the second order systems models
described in equations (46) and (47) have the same maximum absolute value, as shown in
reference [21]:

y(.!9)
pp

"

2m
pp

c
pp

J4k
pp

m
pp
!c2

pp

, (50)

y(.!9)
pq

"

2m
pq

c
pq

J4k
pq

m
pq
!c2

pq

, (51)

By comparing equations (46) and (47) with equations (48) and (49) the following equations
can be obtained:

c
pp
"2am

pp
, k

pp
"m

pp
(a2#b2) (52, 53)

c
pq
"2am

pq
, k

pq
"m

pq
(a2#b2) (54, 55)
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By substituting equations (52)} (55) into equations (50) and (51) the following relationships
can be obtained.

m
pp
"

1

2aby(.!9)
pp

, (56)

m
pq
"

1

2aby(.!9)
pq

. (57)

The parameters of the second order models have the same maximum absolute value as the
frequency response function and also the poles are equal to the roots of the determinant in
equation (27). As will be seen in the next section this method of identi"cation leads to the
optimal matching of the actual and estimated frequency response data.

4. NUMERICAL EXAMPLE AND APPLICATION

A rotor-bearing system which is shown in Figure 3 consists of three lumped steel discs
each with thickness of t"50 mm, diameter of 100 mm connected by four distributed shaft
elements each with length of ¸"400 mm and diameter D"25)4 mm. This example is
considered by Burrows and Sahinkaya. [3] were lumped modelling and vibration control of
rotating machanics are investigated. The rotor with angular velocity of X"360 rad/s is
supported by two identical #uid "lm bearings each with the length l"16)9 mm, and the
journal radius R"25)4 mm. The radial clearance is c"0)127 mm and the lubricant
viscosity is k"0)015 s/m2. Using the above data the sti!ness and damping of the bearings
could be computed according to the procedure outlined in Appendix A. This enables further
computation as following.

1. Compute I"nD4/64 and then C
0
"1/EI and also ¸

0
"oA"noD2/4 for the

distributed shaft parts.

2. Choose a value for u and p, put s"ju#p in equation (7) then compute JC for each
distributed part.
Figure 3. Schematic representation of the rotating shaft system.
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3. Using the values of ¸, C, C
0
, compute the matrix [U

d
] for each distributed part from

equations (2) and (3).
4. Using the values of X, s, J

p
, J

d
, m to compute the matrix [U

l
] for each lumped part from

equations (5) and (6).
5. Using the values of l, R, k, c. X and the load carried by the bearing P "nd the sti!ness

and damping constants of the bearings from equations (1a) to (10a) and then compute
[U

b
] from equations (11) and (12).

6. Find the elements of matrix T from equation (14) and then compute the value of
R from equation (27).

7. Continue steps 2}6 by choosing further values u and p thereafter compute R. When
R is minimized the damped natural frequency has been determined.
Figure 4. Flow chart for the Nedler and Meads Simplex direct search method.
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For minimization of the determinant, the Nedler and Mead simplex search method which is
a direct search optimization technique, is used, for minimizing multivariable functions [22].

The algorithm for this technique for searching for the minimum value of the determinant
is described by the #ow chart in Figure 4. The method accepts the initial values u

i
and p

i
and forms an initial simplex with three vertices. The values of the determinant R

h
, R

g
and R

l
and the vertices Z

h
, Z

g
and Z

l
forms the simplex which is changed in each operation. The

search consists of three basic operations known as re-ection, expansion and contraction
which are described in Figure 4.

After a convergence test [23], the complex root of the irrational characteristics
determinant Z

f
"p

f
#ju

f
is found which minimizes R, thereby giving the damped natural

frequency of the system model. In Table 1 the damped natural frequency of the system is
computed for three di!erent starting values of Z

i
"p

i
#ju

i
. The results show that this

search "nally converges to the accurate damped natural frequency of the system, and the
number of iterations depends on the starting values.

In Figure 5, the three-dimensional graph shows the value of the determinant R versus the
real and imaginary parts of the root, p and u respectively. The minimum value of the
TABLE 1

p
f
#ju

f
is computed using the Nedler and Meads simplex optimization method

Initial values u
i
and

p
i
for starting

optimisation
procedure

Final values u
f

and
p
f

by using Nedler
and Meads simplex

method in METLAB

Number of iterations
in optimization by
Nedler and Meads

method

Minimum value of the
determination in

optimization by Nedler
and Meads method

u
i
"10 rad/s u

f
"112)11 rad/s

p
i
"!10 s~1 p

f
"!2)722 s~1 N"323 R"3)545]1019

u
i
"100 rad/s u

f
"110 )60 rad/s

p
i
"!100 s~1 p

f
"!3)054 s~1 N"464 R"3)735]1019

u
i
"200 rad/s u

f
"110 )60 rad/s

p
i
"!20 s~1 p

f
"!3)054 s~1 N"409 R"3)735]1019

Figure 5. Minimum value of the determinant at whirl frequency is !2)27$112)1j.
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determinant is R"3)55]1019 for s"!2)72#112)1j which determines the damped
natural frequency of the system so that u"112 rad/s, is the whirl frequency which is often
less than half of the rotational frequency as reported in the literature [16]. The result
obtained using lumped modelling, excludes the gyroscopic e!ects of the discs and is
136 rad/s [3]. This accounts for the 13% di!erence in the two results. The "nite element
method result strongly depends on the number and degrees of freedom of the elements [1].
The validity of our approach moreover is indicated by the damped natural frequency
112 rad/s being less than half of the rotational frequency of the rotor [6] while the negative
real part ensures the stability of the system.

For the system in Figure 3, in the case where three sensors are used to measure the
vertical vibration of the lumped discs, while the control force is applied through the
bearings, the system of equations for the #exural vibrations in equation (39) could be
expressed as

q;
1

q6
1

q6
3

q6
2

q;
2

"
5K

Q<
1

Q1
1

Q1
3

Q1
2

Q<
2

, (58)

where the #exibility matrix of the system would be

5K"

[K1
ll
#B1

rl
] [K1

lr
] 0 0 0

[K1
rl
] [K1

rr
!K2

ll
#D1

rl
] ![K2

lr
] 0 0

0 [K2
rl
] [K2

rr
!K3

ll
#D2

rl
] ![K3

lr
] 0

0 0 [K3
rl
] [K3

rr
!K4

ll
#D3

rl
] ![K4

lr
]

0 0 0 [K4
rl
] [K4

rr
#B2

rl
]

~1

.

(59)

In equation (58) the control forces applied to two bearings are designated by Q<
1

and Q<
2
,

while the vertical displacements measured are elements of the vectors q6
1
, q6

2
and q6

3
. When

there is no external forces on the lumped discs,

Q1
1
"Q1

2
"Q1

3
"0. (60)

Considering equation (60) the multivariable frequency response matrix of the system can be
computed from elements of the #exibility matrix in equation (59) by using equation (43):

G
11

( ju)""
5,2

( ju), G
22

( ju)""
13,18

( ju), G
31

( ju)""
9,2

( ju), (61)

G
21

( ju)""
13,2

( ju), G
12

( ju)""
5,18

( ju), G
32

( ju)""
9,18

( ju). (62)

Using the elements of the multivariable frequency response matrix displayed in equations
(61) and (62) and the algorithm for the estimation of the second order transfer functions,
which is described by equations (44)} (57) the transfer function matrix of the rotor-bearing
system can be computed.
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With a con"guration where only one sensor is located at the middle disc and the
actuators are placed at bearings 1 and 2 the system has two input and one output,
hence

>
3
(s)"[G@

31
(s) G@

32
(s)]C

Q
1
(s)

Q
2
(s)D , (63)

where the transfer functions in equation (63) are

G@
31

(s)"
1

(0)000556s2#0)0030s#7)002)
, (64)

G@
32

(s)"
1

(0)000549s2#0)0030s#6)864)
. (65)

Figures 6(a) and 6(b) show how close the estimated transfer functions (64) and (65) are to the
actual transfer function in equations (61) and (62). These "gures also show that at the point
u"112 rad/s there is a peak in the frequency response curves. This con"rms the validity of
the result obtained for the whirl frequency of the rotor.

In the con"guration where two sensors are located at discs 1 and 2, while actuators are
placed at bearings 1 and 2 the system then has two inputs and two outputs, hence

C
>
1
(s)

>
2
(s)D"C

G@
11

(s) G@
12

(s)
G@

21
(s) G@

22
(s)DC

Q
1
(s)

Q
2
(s)D , (66)
Figure 6. (a) Frequency response indicate actual G31, estimated G31. (b) Frequency response, indicate actual
G32, estimated G32.
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where the transfer functions in (66) are

G@
11

(s)"
1

(0)000758s2#0)0041s#9)537)
, (67)

G@
21

(s)"
1

(0)000815s2#0)0041s#10)255)
, (68)

G@
22

(s)"
1

(0)000794s2#0)0043s#9)989)
, (69)

G@
12

(s)"
1

(0)000737s2#0)0040s#9)273)
, (70)

Figures 7(a) and 7(b) and also Figures 8(a) and 8(b) show that the estimated transfer
functions (67)} (70) are very close to the actual transfer functions in equations (61) and (62).
These "gures also show that when u"112 rad/s there is a peak in the frequency response
curves.

When three sensors located at discs 1, 2 and 3 and the actuators are placed at bearings
1 and 2 the system has two inputs and three outputs, hence

>
1
(s)

>
2
(s)

>
3
(s)

"

G@
11

(S) G@
12

(s)
G@

21
(s) G@

22
(s)

G@
31

(s) G@
32

(s)
C
Q

1
(s)

Q
2
(s)D . (71)

The second order transfer functions in equation (71) are given by equations (64), (65) and
also (67)} (70).
Figure 7. (a) Frequency response indicate actual G11, estimated G11. (b) Frequency response, indicate actual
G12, estimated G12.



Figure 8. (a) Frequency response indicate actual G22, estimated G22. (b) Frequency response, indicate actual
G21, estimated G21.
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CONCLUSION

Lumped modelling procedures are generally employed in the analysis of &&active vibration
control'' of rotor-bearing systems [3]. This results in high order system models, which in
turn create di$culties in design of controllers [2]. An experimental study based on these
theories suggests that an e$cient way for controlling the vibrational amplitude is by
implementing a single magnetic actuator with a position which is determined by an on-line
computer [24]. However, a more practical scheme can be achieved by putting the magnetic
actuators at the supporting bearings with the measured vibration amplitude of the rotors as
outputs [25]. In this paper, a method is proposed for the computation of multi-input,
multi-output, transfer function matrix description of rotor-bearings system. This results in
greater accuracy and lower order representation enabling, multivariable frequency domain
techniques to be implemented for controller design purposes.
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APPENDIX A

For the computation of the sti!ness and damping coe$cients of a journal bearing the
following data is required. (1) length of the journal bearing l, (2) radius of the journal, R, (3)
radial clearance c, (4) lubricant viscosity k, and (5) angular velocity of the journal u.

Then the load-carrying capacity of the bearing would be

P"JF2
r
#F2

s
, (A1)

where

F
r
"!

ue2kI3R

c2(1!e2)
,

(A2)

F
s
"

unekI3R

4c2(1!e2)1.5
.

The variable e in equation (A2) is the eccentricity ratio.
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The following successive steps are necessary:
Step 1. Using l, R, c, k, and u compute the parameters

K
r
"

ukI3R

c2
, K

s
"

unkI3R

4c2
. (A3)

Step 2. When the load carried by bearing P is known the eccentricity ratio e can be
determined by "nding the roots of this fourth order equation:

P2e4#(K2
s
!4P2)e3#(6P2!K2

r
!K2

s
)e2!4P2e#P2"0. (A4)

Step 3. Compute the following dimensionless parameters:

k
rr
"

8(1#e2)
(1!e2)[n2 (1!e2)#16e2]0>5

, k
rs
"

n (1!e2)0>5
e[n2 (1!e2)#16e2]0>5

, (A5)

k
sr
"

n (1#2e2)
e (1!e2)0>5[n2 (1!e2)#16e2]0>5

, k
ss
"

4

[n2 (1!e2)#16e2]0>5
. (A6)

Step 4. Compute the angle t and the parameters

tant"

DF
s
D

DF
r
D
"

n (1!e2)0.5
4e

, (A7)

c
rr
"c

sr
"2k

ss
, c

ss
"2k

rs
, c

rr
"2k

sr
. (A8)

Step 5. Compute the sti!ness of the bearing from the equation

K
yy

K
yz

K
zy

K
zz

"

P

c

k
rr

k
ss

(k
sr
!k

rs
)

k
rs

k
sr

(k
rr
!k

ss
)

k
sr

k
rs

(k
ss
!k

rr
)

k
ss

k
rr

(k
rs
!k

sr
)

cos2 t
sin2 t

cos t sin t
, (A9)

and damping coe$cients of the bearing from

C
yy

C
yz

C
zy

C
zz

"

P

cu

c
rr

c
ss

(c
rs
#c

sr
)

!c
rs

c
sr

(c
rr
!c

ss
)

!c
sr

c
rs

(c
rr
!c

ss
)

c
ss

c
rr

!(c
rs
#c

sr
)

cos2 t
sin2 t

cos t sin t
. (A10)

APPENDIX B: NOMENCLATURE

A area of the shaft cross-section
E shaft modulus
G

ij
( ju) elements of the system frequency response matrix

G@
ij
(s) elements of the estimated system transfer function

I second moment of area in bending
J
p
, J

t
polar and transverse moment of inertia of disk

¸ length of each distributed part
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M
y

bending moment function, y direction
M

z
bending moment function, z direction

Q
y

shear force function, y direction
Q

z
shear force function, z direction

[Q1
i
] force vector at the ith element

[q6
i
] displacement vector at the ith element

R characteristic determinant of the system
s Laplace transform matrix
T overall tansfer matrix
> vertical displacement function
Z horizontal displacement function
h slope function in vertical plane
o density of distributed shaft
/ slope function in horizontal plane
C auxiliary Laplace variable
U

l
transfer matrix of the lumped disc element

U
b

transfer matrix of the lumped bearing element
U

d
transfer matrix of the distributed shaft element

X rotational speed of the shaft
K dynamic sti!ness matrix of rotor system
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